Improving the Performance and Scalability of Differential Evolution
نویسندگان
چکیده
Differential Evolution (DE) is a powerful optimization procedure that self-adapts to the search space, although DE lacks diversity and sufficient bias in the mutation step to make efficient progress on nonseparable problems. We present an enhancement to Differential Evolution that introduces greater diversity. The new DE approach demonstrates fast convergence towards the global optimum and is highly scalable in the decision space.
منابع مشابه
A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملImproving LoRaWAN Performance Using Reservation ALOHA
LoRaWAN is one of the new and updated standards for IoT applications. However, the expected high density of peripheral devices for each gateway, and the absence of an operative synchronization mechanism between the gateway and peripherals, all of which challenges the networks scalability. In this paper, we propose to normalize the communication of LoRaWAN networks using a Reservation-ALOHA (R-A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008